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Software has been developed which applies group-theoretical methods to the calculation of phonon
spectra. The software draws on a large data base which includes information on each of the 230
crystallographic space groups and their irreducible representations. The software finds the optimal
phonon modes for the frozen-phonon energy calculations.
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Over the past ten years, Stokes and Hatch!~* have been developing software for
applying group-theoretical methods to phase transitions in crystalline solids. This
software package, named ISOTROPY, uses a large data base which includes infor-
mation about the 230 crystallographic space groups (symmetry elements, Wyckoff
positions, etc.), their irreducible representations, and isotropy subgroups. ISOT-
ROPY allows us access to this data base, selecting the information desired and
displaying it in an organized manner. ISOTROPY also does additional calculations,
such as finding invariant polynomials in the expansion of the Landau free energy
and projecting distortion modes in a phase transition. (ISOTROPY is now available
for installation upon request.”)

As an example of how ISOTROPY can be useful in many different areas of research
in solid state physics, we discuss in this paper its application to frozen phonon
calculations. These calculations provide information about normal modes of os-
cillation in a crystal.

In this method, the possible atomic displacements in a crystal are organized into
collective modes (not necessarily the normal modes),

Y; = {Arij}' (1)

In the ith mode {s;, the jth atom is displaced by an amount Ar;;. A general distortion
in the crystal can be written as

g = Z Cils;. (2)

For such a distortion, the total potential energy of the crystal can be written in the
form,
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(using the harmonic approximation). The normal modes and their frequencies o
are obtained by solving the coupled equations,

mi(.l)zci = Z AUCJ’ (4)
J

where m; is the mass of the atoms in the ith mode. (Each mode contains displace-
ments for one kind of atom only.) If the modes are correctly chosen, the matrix
A will be in block-diagonal form, allowing us to solve Equation (4) for one block
at a time.

The matrix elements of A are obtained by calculating the energy of various
frozen phonons. In an n-dimensional block, there are 3n(n + 1) elements of A to
be determined (A is symmetric). To obtain these elements, the energy of sn(n +
1) different frozen phonons must be calculated. Therefore, it is advantageous to
choose the modes so that the blocks along the diagonal of A are as small as possible.

Using group-theoretical methods, we can easily make this optimal choice. We
simply construct modes which transform like basis functions of the irreducible
representations (IR’s) of the crystal’s space group G. The modes which transform
like the same basis function of the same IR belong to the same block along the
diagonal of A.

As an example, consider the crystal CaCuO,. Its space-group symmetry is P4/

mmm (tetragonal). The structure of CaCuO, is shown in Figure 1. In this example,
we consider the M point which is at k = (w/a, m/a, 0). There are 10 IR’s of P4/
mmm belonging to M. Using one IR at a time, we project out modes which
transform like basis functions of that IR.3 The results are shown in Table 1. The
labeling of IR’s follows the convention of Miller and Love.® (Note that there are
no modes which transform like basis functions of M or M} .)
" The number of blocks in A resulting from modes belonging to a particular IR
is equal to the dimension of that IR. Each block contains modes which transform
like one of the basis functions of the IR. {An n-dimensional IR has » basis func-
tions.) Furthermore, each block is identical. This gives rise to n-fold degenerate
normal modes. All of the IR’s except M5 and M5 are one-dimensional. Their
normal modes are nondegenerate. IR’s M and M§ are two-dimensional. Their
normal modes are two-fold degenerate.
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FIGURE 1 The unit cell of CaCuQ,.
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TABLE 1

Projected modes at the M point for CaCuO..
In the columns are given the irreducible
representation, the atoms displaced in the modes,
the number and dimension of blocks along the
diagonal of matrix A, and the space-group
symmetry of the resulting frozen phonons.

IR Atoms  Blocks Symmetry
# Dim
Mt o) 1 1 P4/mmm
My O 1 1 Pd/mbm
My O 1 1 P4/mbm
* My O 1 1 P4/mmm
MF 0 2 1 Pmna,Cmma, P2/c
M;  Ca 1 1 Pé/nmm
My Cu 1 1 P4/nmm

Mg Ca,Cu 2 2 Pmma, Cmmm, P2/m

The dimension of each block in A is equal to the number of different modes
which can be constructed to transform like one of the basis functions of the IR.
All of the IR’s except M5 can project out only one mode for each of its basis
functions. Each mode involves the displacements of only one kind of atom. M
is two-dimensional and thus projects out two modes, one for each of its basis
functions. These two modes belong to two identical one-dimensional blocks in A.

M5 projects out two modes for each of its basis functions. One mode involves
displacements of Ca and the other involves displacements of Cu. Since M 5 is two-
dimensional, there are four modes all together, two in each of the two identical
blocks in A.

To obtain all of the normal modes at the M point, we solve Equation (4) for
seven one-dimensional blocks and one two-dimensional block.

The frozen phonon associated with each mode generally reduces the symmetry
of the crystal. The space group of the distorted crystal is an isotropy subgroup of
G. In Table I, we list the isotropy subgroups for each of the IR’s.* For one-
dimensional IR’s, there is only one isotropy subgroup, since there is no freedom
of choice in the distortion. '

5 and My are two-dimensional, and we see that more than one isotropy
subgroup are listed for these IR’s. Consider M 5. For this IR, there are two identical
blocks in A. This means that the modes in those two blocks may be mixed without
changing the elements in the blocks. Let {s; be the jth block. We form new modes
in the following way:

¢; = Z b, (5

where the coefficients m; are independent of j. They constitute a vector § = (v,
") in representation space. In phase transition theory, w is called the order pa-
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FIGURE 2 Frozen phonon in CaCuO, for IR M5 and m = (g, 0). The space-group symmetry is
Pmma. The figure shows the projection of the crystal onto the xy plane. The unit cells of P4/mmm are
indicated by the solid lines. The unit cell of Pmma is indicated by the dashed line. The Cu’s and Ca’s
are displaced in the = (a — b) directions.
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FIGURE 3 Frozen phonon in CaCuQ, for IR Ms and m = (a, a). The space-group symmetry is
Cmmm. The figure shows the projection of the crystal onto the xy plane. The unit cells of P4/mmm
are indicated by the solid lines. The unit cell of Cmmm is indicated by the dashed line. The Cu’s are
displaced in the +b directions and the Ca’s are displaced in the =-a directions.
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rameter. These two new distortions, ¢, and ¢,, form a block in A with the same
elements as the blocks for {s;. The choice of m does not affect the elements in the
block, but it does affect the symmetry of the frozen phonon. For the choice of IR
matrices used in ISOTROPY, ©} = (g, 0) and vy = (0, a) result in the isotropy
subgroup Pmma, v = (a, *a) results in the isotropy subgroup Cmmm, and any
other choice of v results in the isotropy subgroup P2/m.* The frozen phonons for
N = (a, 0) and ) = (a, a) are shown in Figures 2 and 3, respectively. Note that
the two phonons represented by the two figures have the same frequency. They
represent degenerate modes.

Sometimes, the symmetry of a frozen phonon can greatly affect the efficiency
of an energy calculation. In that case, we choose the m that results in the optimal
symmetry of the isotropy subgroup. For example, sometimes the size of the unit
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cell is different for different isotropy subgroups. This can occur when there are
more than one k vector (“arm”) in the star of k. Subgroups with larger unit cells
satisfy k*R = 2mn simultaneously for more than one k (arm) in the star. We
generally want to choose the isotropy subgroup with the smallest unit cell.

The situation becomes more complicated for complex IR’s. The matrices of these
IR’s contain complex elements. We avoid complex numbers in our calculations by
forming a physically irreducible representation (PIR). This is done by forming the
direct sum of each IR matrix with its complex conjugate. An appropriate trans-
formation can then bring the matrices to real form. These matrices are irreducible
with respect to real numbers. However, since they are not true IR’s, they do not
automatically produce a separate block in A for each dimension of the PIR. (This
problem is caused by the failure of the orthogonality theorem for PIR’s).

The solution to this dilemma is presented here without proof.” If we choose
modes which have the symmetry of one of the isotropy subgroups for the PIR,
they will form a block in A. As an example, let us consider a rather complicated
case. The IR W, of space group Fm3c is six-dimensional and complex. We form
the twelve-dimensional PIR W, W,. (The IR W, happens to be the complex con--
jugate of W,.) There are 26 different isotropy subgroups for this PIR.* The cell
sizes for these subgroups range from 4 to 32 times the cell size of the undistorted
crystal. We choose one of the subgroups (I4m2) with the smallest possible cell size
(4 x). We find that the order parameter for this subgroup iswm = (a, 0, 0, 0, 0, 0,
b, 0,0, 0,0, 0). The two numbers, a and b, are arbitrary. This means that modes
Wthh transform like the 1st basis function of the PIR produce the symmetry of
I4m2, and modes which transform like the 7th basis function produce the symmetry
of I4m2. Any combination of the two modes will also produce the symmetry of
[4m2. Since we do not know which combinations belong in different blocks [and
in fact cannot know until after the solution of Equation (4)], we must include both
kinds of modes. The block will contain modes that transform like the 1st basis
function of W, W, and modes that transform like the 7th basis function of W,W,.
The dimension of the block will be twice the number of modes projected out for
each basis function of the PIR.

In this example, the order parameter has two degrees of freedom. It can be
shown that for a PIR formed from a complex IR, all order parameters must have
at least two degrees of freedom. Therefore, the block formed in this example is
the smallest possible, using symmetry arguments alone.

ISOTROPY makes all of these calculations simple to perform. It lists for any IR
or PIR the isotropy subgroups along with related information, such as the size of
the unit cell and the vectors of the primitive lattice. ISOTROPY also projects out
modes and lists the atomic displacements which have the symmetry of any chosen
isotropy subgroup. These modes can then be used in frozen-phonon energy cal-
culations to obtain the elements in the block on the diagonal of matrix A. These
are powerful techniques for using symmetry and are very simple to apply using
ISOTROPY.
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